Reviewing How a Data-Field Computation works in Orixa

Orixa uses Functions within the definitions of a data-table to enable automation of computation of the
values of certain data-fields. This allows much of the data-entry process to be stream-lined, making it
quicker and easier for users.

This process is just a normal part of SQL Syntax and is common across very many types of database. The
SQL Key Words "COMPUTED" adnd "GENERATED" are used as part of a column definition. For these
columns the values they contain will then be set by the statement which follows "COMPUTED AS" or
"GENERATED AS" in the data-tables definition.

Often this value is a SUM or AGGREGATE of values in a child data-table, or a look-up of a value (such as a
Price) in a Linked data-table. To access these values, the database calls a FUNCTION, as is explained below.

A worked example of Data-field Computation

Example: An Orixa System includes a "Deliveries" data-table, where Products are delivered and the
company pays an DeliveryCost, based on the Kilo weight of the deliveried items.

The Data-definition of the "Deliveries" data-table (simplified)

CREATE TABLE "Del i veries"

("I'D'" I NTEGER DEFAULT U D() NOT NULL,

"WayBi | | Num' VARCHAR(20) COLLATE "ANSI ",

"Farmersl D' | NTEGER,

"Productsl D' | NTEGER DESCRI PTI ON ' Cust om Products, DeliveryProductslList',

"Units" FLOAT DEFAULT O NOT NULL,

"Kg" FLOAT DEFAULT O NOT NULL,

"UnitPrice" DECI MAL(19, 4) GENERATED ALWAYS AS | F(Conpl ete = true THEN UnitPrice ELSE
Pr oduct Pur chasePri ce(Productsli D)),

"Product Cost" DECI MAL(19, 4) COVPUTED ALWAYS AS Kg * UnitPrice,

"Supervi sorl D' | NTEGER DESCRI PTI ON ' Reuselast "',

"DeliveryCost" DECI MAL(19, 4) GENERATED ALWAYS AS | F(Conplete = true THEN DeliveryCost ELSE
Pr oduct Tr ansport Cost (Productsl D) * Kg),

"Dat eCreat ed" TI MESTAMP DEFAULT Current _Ti nestanp NOT NULL,

"Conpl et e" BOOLEAN DEFAULT fal se NOT NULL

)

Notice in this data-table

1. ProductsID includes a definition for a custom look-up, so that specific products are available in the pick-
list to choose for delivery, but the table actually stores the ID (a whole number).

2. The UnitPrice is generated automatically from the price set for the Product, using the
"ProductPurchasePrice" function.

3. ProductCost is UnitPrice * Kg.

4. DeliveryCost is generated using the ProductTransportCost function.

Very importantly, notice that in the above example all GENERATED columns do NOT run if the record is marked "Complete", this is important,
because Products.Price and Products.TransportCost may vary over time. If a Deliveries record is edited after the price has changed the
GENERATED columns would re-compute. Therefore it is important that once the data entry is complete the record is marked "Complete" this
will "lock" its values, so that recomputation cannot occur.

Details of the "ProductTransportCost" Function

FUNCTI ON " Product Transport Cost" (IN "al D' | NTEGER)
RETURNS FLOAT

BEG N
DECLARE Crsr CURSOR FOR Stnt;

DECLARE Result Fl oat;
PREPARE Stnt FROM
' SELECT

Transport Cost

FROM Pr oduct s

WHERE ID = ? ';
OPEN Crsr USI NG al D,
FETCH FI RST FROM Crsr (' TransportCost') | NTO Result;
RETURN Resul t;
END

The function uses a SQL CURSOR and STATEMENT This is made available in the function through the line:
DECLARE Crsr CURSOR FOR Stmt;
The above line tells the Function that the following code will contain SQL Statements (held in the variable Stmt).

Calling "OPEN Crsr" will cause the Statement to be run, and will make the data contained available through code such as

FETCH First FROM Crsr('FieldName') INTO VariableName.

Note how a FUNCTION has a Result (which itself should be declaured at the start of the Function), and should end with the line:
RETURN Result;

To pass the Result back to the receiving process.

If you read the above ProductTransportCost Function you can see that it declares a short SQL Statement to return the current value of the
"TransportCost" field in the Products data-table. The function passes in the ProductsID, and this is passed in as a parameter at the point where the
"?" occurs in the statement.

OPEN Crsr USING alD;

The "alD" variable appears in the first line of the Function as an "IN" Variable. This means it is passed by the calling code.

Once the Crsris OPEN, and we have called FETCH FIRST, we have found the Transport cost and put its value into the Result.

This is returned to the Deliveries data-table, where it is multiplied by the value of the "Kg" field to generate the DeliveryCost.

Using Orixa Tools to do your own review of field-level computations in your App

Find the definition of the data-field you are checking

e

(]

“Data” Database Business Objects details

rains [rggers | Dependenies

DB Utility Viewing Field-Generation Definition

1. Open the Orixa Database Management Utility, and select the "Business Objects" heading of the Database
Treeview.

2. Click on the name of the Business Object. In the example above the "StockPurchaseltems" Business
Object has been selected.

3. Find the field that you want to analyse. The GenCompDefault column of the "Columnns" grid will show
details of the COMPUTATION or GENERATION for the particular field. An Edit Form for the
"StockPurchaseltems" record is open showing the COMPUTED value. Note that the field is shown in a
dark-brown colour, indicating that it is COMPUTED, and therefore cannot be edited by staff.

When Orixa systems become more complex, COMPUTATION and GENERATION processes can become hard to untangle. For example the
COMPUTATION may include references to other fields in the data-table.

Reviewing the definition of a data-field using the SQL Definition

] o Dtabase Management sity: “Serendisys I 127001 Port 12010

Siries ~@iacions - Db ~
serndsrs (@) v come

@ Orixa Database Treeview

> Business Objects
£ Framework Tables

(4 System Information () satEdor ([[+]

“Data” Database Business Objects details

stem s [Deliveries

Columns Indexes Constraints Triggers Dependencies

S-B-T-8

SQL Definition n
+ Cheae TAOUMBE iverics”
2

| Other Tables 3 *ID" INTEGER DEFAULT UID() NOT WULL,
£ Functions/Procedures OrdinalPos Name Desciption 4 "ayBillNun" VARCHAR(20) COLLATE "ANSI"
® Views < "FarmersIo” TNTEGER,
S ¢ PreductsTo" IWTEGER DESCRIPTION “Custon, Products, Deliveryprodictsilst’,
d_/i Tables 2ty 7 T DEFAULT o NOT
e R 3 FamersD o "Kg" FLOAT DEFAULT O
£ Functions/Procedures = y
P (R 5 “Unitprice" DECIIAL(1S,4) GENERATED ALIAYS AS IF(Conplete = true THEN UnitPrice FLSE
® Views 10 "ProductCost” DECTIAL(39,4) COMPUTED ALVAYS A5 K = Uniceri
slunts 11 "SupervisorI0" INTEGER DESCRIPTION 'ReuseL
oo sk 12 “InporsedTouicidooks SOoLEAN DEFAULT False NOT WULL DESCRIPTION " [prepertics]
s 13 Readonly~
% 7luniorce
Atendorce 54 vt Lo Fnese AT Curent. Tioestarg o AL,
ocoaDetals 8|ProductCost :
= 15 “Complete" BOOLEAN DEFAULT false NOT
Crrences 3 Superviord Reuselast 1¢ “FullName” VARCHAR(30) COLLATE "ANSI" (MMED ALKAYS AS TF (ayBilliium 1S NULL THEN
Customers 17 CasT(Datebone s VARCHAR(19)) +
10 ImportedToQudocks_ [Properties]
Dirpeisie FElo) [Properie] 15 16(kg 15 WoLL THER " ELSE CAST(Kkg AS VARCHAR(15)) + "Kg'),
11 patecreated 15 “QBID" VARCHAR(20) COLLATE “ANSI® DESCRIPTION *[Properties]
B I - » 2k
s H\% 2 one” DATE LT curent fote,
it rganisations:
Inspectons 1 Datedore THTEGER DEFRULT T2T
Lorpaments S S 2% “DeliveryCost” DECDUAL(15,€) GHIERATED AUYS A5 IH(Corplete = true Tk
ManienanceDane 17|vencesid = Mt IR s ot e e
Vanenancehecc

Questonaires

Questonsectons
SalaryDetals

Sales
SalesQualtyMessures
Samples

15 VehideConditonID
19 DeliveryCost

20 ExtemalTraceCodes FOR USE BY LBC

25 CONSTRAINT "PK_Purchases” PRIMARY KEY ("ID"

25 CONSTRAINT “FarnersI0" FORELGN KEY (*Farner; o) REFERENCES “Farmers” (“ID")
UPDATE No ACTION ON DELETE NO ACTION

31 DESCRIPTION ‘Default

32 CONSTRATNT “productsID" FOREIGN KEY (*Producta D) REFERENCES "Products™ ('10%)

33 ON UPDATE NO ACTION ON DELETE NO ACTIO!

A ey E i Suve VvisorID") REFERENCES "Staff™ ("ID")

NO ACTION ON DELETE NO ACTIO

- e - FoRelow Kkev.(H ") REFERENCES "Organi

37 ON UPDATE NO ACTION ON DELETE NO ACTION,

38 CONSTRAINT "VehiclesID" FOREIGN KEY (“VehiclesID®) REFERENCES "Types” (“ID")
UPDATE NO ACTION ON DELETE NO ACTION,

Socalinicators2005 10 consTRATHT - FOREIGN KEY (" ") REFERENCES "Types
Socalindicators2012 ON UPDATE NO ACTION ON DELETE NO ACTION

Staff)

Stodks 43 DESCRIPTION *[Prop:

TaxRates 44 LockIfCompleteSecu

SQL Definition in DB Utility

The same information can also be viewed in the "SQL Definition" of the table.

1. SQL Definition is always displayed on the right hand side of the DBUtility when a data-table is being
viewed.

2. Click on the desired data-table and then find the definition of the particular data-field. Details of the
function that it references can be seen.

Finding the Function that has been referenced in the data-field definition
Once you have discovered the particular function which defines the generation of a data-field, you can then check its SQL definition to understand
how it works.

Functions

@ Orixa Database Treeview
- pata

[? Business Objects
& Framework Tables
] other Tables

Functions procedures

OriginalAuthor
PAYE

Popi2005FarmerScore
POPT20055coreToPovertyIndex 100
POPI20055coreToPovertyIndex150

[d systempB
[E] Tables
i Functions/Procedures
@ Views

- = o
@ Views

POPI20055coreToPovertyIndex200
Popiz012FarmerScore
POPI20125coreToPovertyIndex 100
POPT20125coreToPovertyIndex150
POPI20125coreToRovertyIndex200
ProductPrice

ProductPurchasePrice
ProvidentFundDeduction

SQL Definition
1 FUNCTION “ProductTransportCost” (IN "aID" INTEGER)
RETURNS FLOAT

3 BEGIN

4 DECLARE Crsr CURSOR FOR Stmt;
S DECLARE Result Float;

€ PREPARE Stmt FROM

7 ' SELECT

H TransportCost

S FROM Products WHERE ID = ? ';

10 OPEN Crsr USING aID;
11 FETCH FIRST FROM Crsr('TransportCost') INTO Result;
12 RETURM Result;

-] configuration-Tables 13 END
-4 other Databases RemoteStarelsAvailzble 1s
--[3 Finalversion Commesior ot
s StaffnionMember
-{ Tables StatuslD
d i)
i Functions/Procedur S
B Views TableLastCreateDate
{3 NewFinalVersion Ehla‘:ﬂ;\‘cnunt
axableGross
] Tables Loies
£ acedure TheoreticaltieldPerTr
@ Views ThisUserEndID
e (ThisUserStartiD
e, TimeSincelastUpdate
[Trim_RSpacesCommas
\TypelD
[TypelDList
TypeValue
uD
UnionDuesPercentage
YearMonth
YearStartDate
YearWeek

Finding a specific function definition in the DB Utility
1. In the Database Management Utility click on the "Functions/Procedures" heading for the main "Data"
database.
2. Find the function's name, and click on it.
3. The SQL Definition will display on the right hand side of the screen.
Once you have completed this process you can see that the DeliveryCost in the Deliveries data-table is generated using a "TransportCost" value in
the Products data-table. If the TransportCost is zero, then the DeliveryCost will not be generated correctly. Also, if the data-record is marked

"complete" the value will not recompute. This is important as it means that once a record is "Complete" computation of the TransportCost will not
be triggered again which guarantees that the value will be permanently fixed regardless of any updates to the database.

